

Qu	Answer	Mark	Comment
4	$\begin{aligned} & \sum_{r=1}^{n} r^{2}(r+2)=\sum_{r=1}^{n} r^{3}+2 \sum_{r=1}^{n} r^{2} \\ & =\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{3} n(n+1)(2 n+1) \\ & =\frac{1}{12} n(n+1)[3 n(n+1)+4(2 n+1)] \\ & =\frac{1}{12} n(n+1)\left(3 n^{2}+11 n+4\right) \end{aligned}$ i.s.w.	$\begin{gathered} \hline \mathrm{M} 1, \mathrm{~A} 1 \\ \mathrm{M} 1, \mathrm{~A} 1 \\ \text { M1 } \\ \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Separate sums Use of formulae. Follow through from incorrect expansion in line 1. Factorising
5	$\begin{aligned} & w=x+1 \Rightarrow x=w-1 \\ & \Rightarrow(w-1)^{3}+2(w-1)^{2}+(w-1)-3=0 \\ & \Rightarrow w^{3}-3 w^{2}+3 w-1+2 w^{2}-4 w+2+w-1-3=0 \\ & \Rightarrow w^{3}-w^{2}-3=0 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1, } \\ \text { A1,A1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	Substitution. For substitution $w=x-1$ give B0 but then follow through. Substitute into cubic Expansion Simplifying

5	Alternative $\begin{aligned} & \alpha+\beta+\gamma=-2 \\ & \alpha \beta+\beta \gamma+\alpha \gamma=1 \\ & \alpha \beta \gamma=3 \end{aligned}$ Coefficients: $\begin{aligned} & w^{2}=-1 \\ & w=0 \end{aligned}$ constant $=-3$ Correct final cubic expression $w^{3}-w^{2}-3=0$	M1 A1 B1 B1 B1 B1 [6]	Attempt to calculate these All correct
Qu	Answer	Mark	Comment
6	For $k=1,1 \times 2^{1-1}$ and $1+(1-1) 2^{1}=1$, so true for $k=1$ Assume true for $n=k$ Next term is $(k+1) 2^{k+1-1}=(k+1) 2^{k}$ Add to both sides $\mathrm{RHS}=1+(k-1) 2^{k}+(k+1) 2^{k}$	B1 E1 M1 A1 M1 A1	Explicit statement: 'assume true for $n=k$ ' Ignore irrelevant work Attempt to find $(k+1)$ th term Correct Add to both sides Correct simplification of RHS

Qu	Answer	Mark	Comment
Section B (continued)			
9(i)	$\mathbf{M}^{2}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)=\mathbf{I}$	B1 [1]	.
9(ii)	\mathbf{M}^{2} gives the identity because a reflection, followed by a second reflection in the same mirror line will get you back where you started OR reflection matrices are self-inverse.	E1 [1]	
9(iii)	$\left(\begin{array}{cc} 0.8 & 0.6 \\ 0.8 & -0.6 \end{array}\right)\binom{x}{y}=\binom{x}{y}$		Give both marks for either equation or for a correct geometrical argument
	$\begin{aligned} & \Rightarrow 0.8 x+0.6 y=x \\ & \text { and } 0.6 x-0.8 y=y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	Both of these lead to $y=\frac{1}{3} x$ as the equation of the mirror line.	A1 [3]	
9(iv)	Rotation, centre origin, 36.9° anticlockwise.	$\mathrm{B} 1, \mathrm{~B} 1$ [2]	One for rotation and centre, one for angle and sense. Accept 323.1° clockwise or radian equivalents (0.644 or 5.64).
9(v)	$\mathbf{M P}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	M1, A1 [2] B1	
9(vi)	$y=0$	[1]	

